Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
PLoS Biol ; 20(11): e3001851, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: covidwho-2109273

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), responsible for the Coronavirus Disease 2019 (COVID-19) pandemic, causes respiratory failure and damage to multiple organ systems. The emergence of viral variants poses a risk of vaccine failures and prolongation of the pandemic. However, our understanding of the molecular basis of SARS-CoV-2 infection and subsequent COVID-19 pathophysiology is limited. In this study, we have uncovered a critical role for the evolutionarily conserved Hippo signaling pathway in COVID-19 pathogenesis. Given the complexity of COVID-19-associated cell injury and immunopathogenesis processes, we investigated Hippo pathway dynamics in SARS-CoV-2 infection by utilizing COVID-19 lung samples and human cell models based on pluripotent stem cell-derived cardiomyocytes (PSC-CMs) and human primary lung air-liquid interface (ALI) cultures. SARS-CoV-2 infection caused activation of the Hippo signaling pathway in COVID-19 lung and in vitro cultures. Both parental and Delta variant of concern (VOC) strains induced Hippo pathway. The chemical inhibition and gene knockdown of upstream kinases MST1/2 and LATS1 resulted in significantly enhanced SARS-CoV-2 replication, indicating antiviral roles. Verteporfin, a pharmacological inhibitor of the Hippo pathway downstream transactivator, YAP, significantly reduced virus replication. These results delineate a direct antiviral role for Hippo signaling in SARS-CoV-2 infection and the potential for this pathway to be pharmacologically targeted to treat COVID-19.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Vía de Señalización Hippo , Antivirales/farmacología
2.
Nat Commun ; 12(1): 1876, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: covidwho-1152854

RESUMEN

Viruses hijack host cell metabolism to acquire the building blocks required for replication. Understanding how SARS-CoV-2 alters host cell metabolism may lead to potential treatments for COVID-19. Here we profile metabolic changes conferred by SARS-CoV-2 infection in kidney epithelial cells and lung air-liquid interface (ALI) cultures, and show that SARS-CoV-2 infection increases glucose carbon entry into the TCA cycle via increased pyruvate carboxylase expression. SARS-CoV-2 also reduces oxidative glutamine metabolism while maintaining reductive carboxylation. Consistent with these changes, SARS-CoV-2 infection increases the activity of mTORC1 in cell lines and lung ALI cultures. Lastly, we show evidence of mTORC1 activation in COVID-19 patient lung tissue, and that mTORC1 inhibitors reduce viral replication in kidney epithelial cells and lung ALI cultures. Our results suggest that targeting mTORC1 may be a feasible treatment strategy for COVID-19 patients, although further studies are required to determine the mechanism of inhibition and potential efficacy in patients.


Asunto(s)
COVID-19/patología , Ciclo del Ácido Cítrico/fisiología , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Animales , Benzamidas/farmacología , Línea Celular , Chlorocebus aethiops , Glucosa/metabolismo , Glutamina/metabolismo , Células HEK293 , Humanos , Pulmón/metabolismo , Pulmón/virología , Morfolinas/farmacología , Naftiridinas/farmacología , Pirimidinas/farmacología , Piruvato Carboxilasa/biosíntesis , SARS-CoV-2/metabolismo , Células Vero , Replicación Viral/efectos de los fármacos
3.
Cell Stem Cell ; 27(6): 869-875.e4, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: covidwho-927289

RESUMEN

Current smoking is associated with increased risk of severe COVID-19, but it is not clear how cigarette smoke (CS) exposure affects SARS-CoV-2 airway cell infection. We directly exposed air-liquid interface (ALI) cultures derived from primary human nonsmoker airway basal stem cells (ABSCs) to short term CS and then infected them with SARS-CoV-2. We found an increase in the number of infected airway cells after CS exposure with a lack of ABSC proliferation. Single-cell profiling of the cultures showed that the normal interferon response was reduced after CS exposure with infection. Treatment of CS-exposed ALI cultures with interferon ß-1 abrogated the viral infection, suggesting one potential mechanism for more severe viral infection. Our data show that acute CS exposure allows for more severe airway epithelial disease from SARS-CoV-2 by reducing the innate immune response and ABSC proliferation and has implications for disease spread and severity in people exposed to CS.


Asunto(s)
COVID-19/fisiopatología , Mucosa Respiratoria/fisiopatología , Fumar/efectos adversos , Células Madre/virología , COVID-19/genética , COVID-19/inmunología , COVID-19/terapia , Células Cultivadas , Regulación hacia Abajo , Humanos , Inmunidad Innata , Interferón beta/uso terapéutico , Gravedad del Paciente , Mucosa Respiratoria/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA